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ABSTRACT

Computational experiments were conducted with three 7
methods for solving the assignment problem: Kuhn's ]

Hungarian method, a primal method due to Balinski and
Gomory, and a negative cycle method proposed by Klein.
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Kuhn's method is seen to be the best of the three.
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AN EXPERIMENTAL EVALUATION OF SOME METHODS OF SOLVING e
THE ASSIGNMENT PROBLEM*

By

Michael Florian** and Morton Klein

Columbia University

l. INTRODUCTION ANC SUMMARY

R e M R l ‘ 4

In [4] a general method was proposed fcr finding minimal

cost flows in networks; for reasons which will be made appar- %
=X
ent in the next section we call it the "negative cycle"

method. The purpose of this paper is to report on some com-

putational experiments with two variants of this method as

it s A

applied to the special minimal cost flow problem known as the
"assignment problem", with the Balinski-Gomory algorithm for
the assignment problem [l1], and with the Hungarian method for

the assignment problem proposed by Kuhn [S5].

The results of our experiments, detailed in section 4
are easily summarized: Kuhn's Hungarian method was the most
efficient (i.e., the fastest) of the methods tested. Over

the range of problem sizes with which we worked (10 x 10 to

R

100 x 100 problems) it was approximately two to five times

|
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faster than the next best Balinski-Gomory algorithm. The
efficiency of variants of the negative cycle method is
directly dependent on the efficiency of the sub-routine

which is used to locate such cycles. Two such sub-routines -
the Floyd-Murchland method for finding all shortest routes in
a network ([2], [6]) and the Ford-Fulkerson algorithm for
finding shortest routes from a particular vertex to all
others [3] were tested. Although the Ford-Fulkerson algo-
rithm was found to be substantially the better of the two, it
is still not good enough to make the negative cycle method

competitive with the others.
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2. THE ASSIGNMENT PROBLEM

In brief, the assignmeni problem is to fill n jobs

by as many men at least total cost., Let aij > 0 repre-

A i R e A W

sent the cost of assigning man i (i = 1,...,n) to job
j (3 = n+l,...,2n), A an arbitrary assignment of n men
to n Jjobs, v(A) the cost of such an assignment (i.e.,

v(A) = E aij)' and & the set of all (n!) possible

|
i
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assignments. Then, an optimal assignment Ao, by definition,

satisfies

SIS L

gl

i

(1) va®) s v@a) |, for all A ¢ @

i R

|
Nl

L a £ ZTa.,. . for all A ¢ 4,

Evidently an assignment A* is optimal if and only if

there is no assignment A such that

gy

(2) -L a,.<o0 , for all A # Ax,

ot o i et )b el il W

Now, suppose we associate the following bipartite

Wt Il

directed graph G(A*) with assignment A*. Vertices of the

first part will correspond to men and those of the second

RLEEED

£ part to jobs. A directed edge connects job j to man i .
E =
£ i
b
3
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with associated cost _aij' if aij € A*; otherwise, an

edge connects man 1 to job j with associated cost

a..'
1]

A* =

ance,

(

Thus for a small (say n = 3) problem with, say,

%i,4+3°

i =1,2,3) the graph has the following appear-

Figure 1: The Graph G(A¥*)

In such a graph any directed cycle € consists of an even

number of distinct directed edges with altermate edges

associated with assignment A=*,

A cycle is of interest because

it can be used as a way of comparing the value of A* with

that of another assignment, say A', where

to A*

A' is identical

except for those components associated with the edges

of the cycle

c.

Within C the components of A* are

associated with the negative cost edges and those of A'

with the positive cost edges.

suppose C =

For example, in Figure 1,
{(1'5): (5:2)1 (214)0 (411)] (Shown with solid

edges), then the components of A' in C are (1,5) and
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g (2,4) while those of A* are (5,2) and (4,1). The differ-

ence in value between A and A* is alS - a52 2 " a41.

If this difference is negative, then A' is a better assign-

e ||‘-n;‘1

+ a

s

ment than A*,

More generally, given a directed cycle € in G(A*) and

an associated assignment A(C), the value of the cycle v(C)

is given by

(3) ViA) = v(A*) = T aij - Ta
A(C) A*

=
£

i3

= T a,, - % a,.s=v(C)
cca ) e 3

W e
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From (2) we know that the assignment A* will be optimal

if and only if there is no assignment A such that v(C) < 0.

QLRI

In terms of the graph G(A*) this means that A* is optimal
if and only if G(A*) contains no cycles whose value is

negative.
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3. A METHOD FOR SOLVING THE ASSIGNMENT PROBLEM

The preceding remarks suggest the following general
method for solving the assignment problem [4].

Preliminary: Choose an arbitrary assignment.
Step 1l: Construct the graph associated with the
assignment.

Step 2: Test the graph for the existence of a cycle
whose value is negative.
{a) If there are none - stop:; the
given assignment is optimal.
(b) If a negative valued cycle exists,

go to Step 3.

Step 3: Trace the negative cycle (i.e. locate it)
and exchange the components of the current
assignment with those of the other components
of the cycle. This yields a new improved

assignment. Return to Step 1.

Testing the graph for the existence of a negative cycle
can be done in a variety of ways. However, all of those
known to us to be "reasonably" efficient, are methods for
solving shortest route problems in graphs containing some
negative costs (distances). The two which we have explored
are:

1) The Floyd-Murchland method for finding all shortest

routes in a network [2), [6] and
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2) The Ford-Fulkerson algorithm (3] for finding a

shortest route from a particular vertex to all

L T

§ others in the network.
g Both of the above algorithms "work", in the sense of find- =
g ing the shortest paths, if the network does not contain any %
§ negative cycles, and both krreak down if such cycles exist. §
% This condition, when it occurs, leads to Step 3 of the %
? proposed procedure: tracing the cycle so that a new improved z
) assignment can be determined. Here also we have explored g
? two methods: §-
1) the Ford-Fulkerson methiod used above, also provides %
= a simultaneous cycle tracing routine, and z
i 2) the use of a "routing" matrix which, when constructed %
simultaneously with the application of the Floyd- é
< Murchland method, serves to trace the vertices %'
involved in the negative cycle. i
= The details of the two methods are given in Appendices %
: A and B.
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4. THE COMPUTATIONAL EXPERIMENT

H
1: One hundred distinct assignment problems (10 each of =
;_ size 10 x 10, 20 x 20, ..., 100 x 100) were generated using E
; - a uniform distribution on the integers from 0 to 50. =5
Each of the 10 x 10 to 50 x 50 problems were used to test %
"all four computational methods using an IBM 360/75 com- 7§
puter. These first runs demonstrated that the negative _ % :

cycle method, with either sub-routine, was not competitive

with the other two, hence the remainder of the experiment

involved only the Balinski-Gomory and Kuhn algorithms.

The results are given in Table 1, below.
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NEGATIVE CYCLE METHOD

PROBLEM — — BALINSKI- | KUHN'S
SIZE - GOMORY | HUNGARIAN
FLOYD-~ FORD~ METHOD METHOD
MURCHLAND FULKERSON
10 x 10 .63 .10 .04 .02
(.28, 1.65) | (.05, .17)| (.02, .05)|(.72, .03)
20 x 20 7.7 .70 .18 .10
(3.4, 12.5) | (.35, 1.02) | (.12, .25)|(.07, .13)
(29, s50) | (1.9, 2.5)] (.43, .77)}(.15, .50)
121 4.4 1.1 .38
40 x 40
(67 156) | (2.2, 6.1)| (.9, 1.4)|(.17, .73)
209 8.1 1.9 .51
50 x 50
x (75, 444) | (4.9, 10.4)| (1.5, 2.3){(.35, .70)
3.1 .92
60 x 60
x (2.7, 3.9)| (.62, 1.36)
4.6 1.5
7 70
0 x (4.0, 5.1)] (.9, 2.5)
6.4 1.4
80 .
80 x (5.7, 7.3)|{(1.1, 1.8)
9.1 1.8
20 x 90 (8.1, 10.0)| (1.4, 3.2)
11.4 2.0
100 x 100 (10.1, 12.6) (1.5, 2.6)
TABLE 1: AVERAGE SOLUTION TIMES (SECS.) - 10 TRIALS EACH;

(MINIMUM AND MAXIMUM SOLUTION TIMES IN PARENTHESIS).
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The relative merits of the two methods of detecting

and tracing negative cycles may be evaluated more precisely

by looking at the time per iteration. The reason for this

’ 3 .
R A S,

is that each iteration (except the last in each trial) g
includes exactly one successful search for such a cycle; % %
thus the average time per iteration is approximately equal g 2
to the time needed to locate and trace a negative cycle. % f
The results of such an evaluation are shown in Table 2. As % ;

T =

can be seen the Ford-Fulkerson shortest route algorithm is

=
&
:
=
=
..
£

still the better method.
NEGATIVE CYCLE METHOD
PROBLEM
SIZE WITH WITH
FLOYD-MURCHLAND FORD-FULKERSON

10 x 10 .63/3 = .21 .10/2 = .05

20 x 20 7.7/9 = .86 .70/5 = ..14 1 3
= ]
£ 30 x 30 42/16 = 2.6 2.2/8 = .28
= 40 x 40 121/20 = 6.0 4.4/10 = .44 ;
; 50 x 50 209/15 = 14 8.1/12 = .67
%j TABLE 2: XAVERAGE SOLUTION TIME (SECS.) PER AVERAGE § 1
= NUMBER OF ITERATIONS TO SOLUTION é ;
: §
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5. CONCLUDING REMARKS

A) Our evaluation of the performance of the algorithms
tested assumes that the computer programs employed for each
method are equally "efficient" in implementing the algo-
rithms. If this is not the case, we believe that the large
difference between the performances of the various algo-
rithms suggest that the results would hold for improved
programs,

B) Although the negative cycle method showed up as the
least efficient of those tested, it still is potentially
improvable. It awaits the development of an efficient r :ans
of detecting (and tracing) the existence of such cycles in a
directed graph. Its current, and perhaps only, virtue is
its ease of presentation in the classroom - independent of
linear programming theory.

C) The assignment problem experiments suggest similar
relative performances for the generalizations of each of
these methods for the transportation problem. If this is
true, the Ford-Fulkerson algorithm (a generalization of
Kuhn's method) for the transportation problem is also likely

to be the best of the group.
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NEGATIVE CYCLE ALGORITHM FOR THE ASSIGNMENT rROBLEM WITH

FORD & FULKERSON SHORTEST ROUTE METHOD

1. sStart computations with a feasible solution.

la., Determine an initial solution using Dantzig's rule.?t

_Assign x =1 for a = min [a..]
Pq Pa 4,3 M

Crosg out row p and column g

p'q’ =1 for ap‘q' = i#gi?#q [aij] and so on
?

until a complete assignment is found.
lb. Define the matrix A'(x)

'aij if xij =

1l
ifx.. =0

al. =
43 a, .
ij ij

2. Use the following heuristic rulett to determine an entry

e AP

peint for step 3.

t

For i =1,2,...,n we have an assignment ji such that

TR e
;

t+ One of the presumed advantages of a "primal" mgthod is
= jts' ability to use "good" starting solutions. Since we do
E not know of any studies indicating whether this rule is

AP o 1 NSOt s, ) St I, 0 0 3 e WS ol 1, et i

i ' better than others, its selection was arbitrary.
Z tt The purpose of chis rule is to try to get as "close" to
§ a negative cycle as possible. Since if the initial point
5 is far from such a cycle, it will take longer to find it.
wﬁlﬁ" = b T EEEeE Tt - - == R
;— - [ e




xij = 1 and calculate

{
8, = 'min {a,.) + min {c,. }J}) 0% = min A
i 543 SR T } =t A

and (3} = r\A; = min Ai]

Start at column r and apply the labeling routine in
-an attempt to find the negative cycle.
Let (Mi'di) denote the label of column j in A'(x).

%i
: E
CE
=
.
. F
=
%
=
£
Tk
t
&
E
¥
:
e
£
£
F
=
é:
g
'-}%‘:
B
£
H
£

Mi indicates the existence of a chain from the initial

point to Mi and an edge toward the column (vertex)

o 3 such that the total cost (distance) is di-

£ Similarly a row label is (J,,d,).

gl J

g. 3. If Jr is the initial point - Label column r (-,0)

3a. Mark each row with label (Jr"air‘)
3b. Mark each column j # r, (M..d, + a..),
- i'Ti ij
where a.. = (a'.la!., 0 and x,, = 1}
1] Ji Jl l]
3¢. Label each row by
. f ) H
{Jk' m;n Ldj + Iaijl]}

e where Jk represents the column at which the minimum

is attained.

oy
|

0 g e

i

E

v

34. Label each column (Mi'di + aij)

Continue steps b and ¢ until the initial point's

i -m‘nlll

[

label becomes negative. If a set of row labels is

duplicated - stop - optimal scl ‘tion reached.

4. The negative cycle C, is identified by tracing back rcrom

,mnm m‘..w1w;;!mnwmmmqqnw

the initial point according to the succession of adjacent

ﬁg
=
=
=
=
=
=
=2
=
=
==
=
=
=
=
=
S
==
A3
=
=B
B
=
=
=
2
=
;
=
=
=
3

bt

Jermin pa




15

row and column labels until the initial point is

encountered for the second time or some other vertex

is encountered twice, indicating a negative cycle that

does not involve the intial point.

The negative cost cycle is represanted by a row vector
C(X). Modify the flow X as follows

o gt R e e
(8]
L]

xij = 0 ’ if ‘Mi'Jj‘ € C and xij

vy I“'WIFi"'E' T;m g b i "1y ‘|,|

]
[

"
o

1, if |Mi.Jj| €C and x,.

return to step lb.
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NEGATIVE CYCLE ALGORITHM FOR THE ASSIGNMENT PROBLEM BASED
ON THE FLOYD-MURCHIAND "ALL SHORTEST ROUTES" METHOD

>
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v

e
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1. Start computations with feasible solution

la. Use Dantzig's rule

I ‘!""!""ﬂ""’?i‘f'lv" ’.-;-w 7y g "‘W"H'}“W““ el FWF,H HEad i TR G BL AN,

ig

E

=

Assign x_ =1 for a__ = min [a,_]. 2

Cross out row p and column q i

X, .,.=1 for a_, ,= min [a,.] 2

i i#p

, itq =

% and s5 on until a complete assignment is found. E

: . o o =

iy 1b. Define D a 2n X 2n matrix with elements =

: dgj =, di,y=1,...,n and i,j = n+l,...,2n ; :

: = aij , i=1,...,n and i =n+l,...,2n ;

% = - ij’ xji > 0, i=n+d,...,2n; j=1,....n ;
£ = w , xji =0, i=n+l,...,2n; j=1,...,n.

Note: In the computations, the matrix X = {xij) is not

required.

2. Test for the existence of a negative cycle by applying

R R A e

the Floyd-Murchland algorithm to the p° matrix.
2a. For k = 1,...,n compute

k)

( - (k=1)
dij = min [dik + dkj' d

i ] for i,j # k.,
and

2b. Record "ROUTE" on routing matrix U = [uij]

T e S TR R
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(k=1)
<
) k ’ if dik + dkj dij
uij =

. w1 otherwise
é and
i (0)
3 = -
: Bi;0 = [0y & 2n =
i If a substitution is made in [dij] such that the
§ shortest route from i = j is through vertex k,
; the index k serves to trace the path of the short-

ast distance from i = j.
2¢c. Test for all k the value of d

ii
If dii'Z 0 for all i and k < n, go to 2a.
1f dii 20 for all i and k = n, stop,
optimal solution reached.
I1I£4,, <0 for sore i record r = {ila,., < 0}
ii ii

and go to step 3.

"!“‘:ﬁ :.uuuu‘!-; [

3. Cycle Tracing
Let C be a row vector that contains the cycle elements.
é; The maximum size of this vector is (2n + 1).
:§7 3a. Initiate search with Cy = TiCy=u iCy=x

Let Xk denote the number of elements in C; (k = 3

1 A ) AL e st Gt s

t ?- at this stage).
E ] 3b. For i =1,...,2n |
| 4 Let i, 56,7 35 = ¢ {
l . 1t uili2 = 0 return to start of 3b. 2 ?
3
If u, . # 0 then modify c. as follows 2
L *1%2 * 3
g
§
E i
! Foinn o SR - =T T T e T o=
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, ,
i1, 2
i
) -= E
o} =e , i
cj+2 cj+l for j = 1,...,k § 3
and ,% 1
' = =
then go back to start of 3b. §
When this procedure terminates, C = (¢ i) contains the %;:; 3
] cycle elements and k equals the number of entries in %
t the cycle. % 5
z The number of vertices involved in the cycle is k - 1. i E
: 4. Modify solution ‘Z% :
E 4&- FOI‘ i = i'nt.'k ;:%;:t'--/
% Let i, =1 i, =1+ 1 é :
4b. If c, > ¢, go to 4c, otherwise go to 4d. E
= :Ll 12 ;
: N
4c. If 4, . <0 put 4, 4., = o,
1tz 1 R
3 otherwise di i - da, di and return to 4a.
; 172 1 2
] 4. If d, , <0 put d, , = o,
;_ . 1211 1211
i
: otherwise di i = -4, i and return to 4a.
2%1 b )

When this procedure terminates for i = 1,....,k

return to step 2.
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START

Determine an initial
solution

(Dantzig's Rule)

Aol R A A e et

'--"—-3[;Define the matrix A'(x)J

fé’i_:
z
4
i
;',
Ca

with =A%

I Find index r associated |
i

Lgark initial row labels

-

L

[ﬁMark initial column labeigw

v
al Mark another set
of row labels
v

Are the new row labels no
all different than f————— sTOP
the previous?

‘um”mqmm,v,‘p.‘ ! gl A, |‘|ﬂl-1||-;v-|"4. Jontar

e *m(pl.,ml" . n! "

e 1
=2
=
;;Tx
=
=
3
=
2
ES

yes

Mark another set
of column labels

a o Bl 1l

Z N , es E
= Is the initial point's Y :
: label negative? I H

| e [Afrace negative cyclel :

o

i I Modify tTe assignmenf]

R
—

At

FLOW CHART FOR NEGATIVE CYCLE ALGORITHM
WITH FORD & FULKERSON SHORTEST ROUTE MEHTOD
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START

\

Determine én initial
solution

(Dan%zig's Rule)

A

Define the matrix g
and initialize u

O

20

for all pairs i,j # k

Compute shortest distanceF%——-—____j.

\

[Record route in matrix_a]

Is there a negative

diagonal 2lement in D?

A

—22->1s k < n2|- X224 s70P

no

Record index r of the

negative diagonal element]

L

I Trace negative cyclé]

‘L‘—————-4_Modify the assignment

FLOW CHART FOR NEGATIVE CYCLE ALGORITHM
BASED ON THE FLOYD=-MURCHLAND

"ALL SHORTEST ROUTES" METHOD
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